metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Carbonylbis(triphenylphosphane- κP)(η^2 -1-vinylpyrrolidin-2-one- κO)ruthenium(0)

Si Jia Ma^a and Po Niu^b*

^aDepartment of Preventive Medicine, School of Public Health, Xiamen University, Xiamen 361005, Fujian, People's Republic of China, and ^bDepartment of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, People's Republic of China Correspondence e-mail: niupo1119@hotmail.com

Received 28 March 2012; accepted 4 April 2012

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.025; wR factor = 0.084; data-to-parameter ratio = 16.1.

The 1-vinylpyrrolidin-2-one ligand in the title compound, $[\operatorname{Ru}(C_6H_9\operatorname{NO})(C_{18}\operatorname{H}_{15}\operatorname{P})_2(\operatorname{CO})]$, coordinates to the Ru^0 atom with the olefin double bond and the ketone O atom. The Ru^0 atom adopts a distorted trigonal-bipyramidal coordination geometry, with the C=O ligand and the ketone O atom occupying the axial positions. The two triphenylphosphane ligands are *cis* to each other. The olefinic C=C bond is almost coplanar with the Ru⁰ atom and the two P atoms (maximum deviation of 0.0516 Å from the mean plane defined by the five constituent atoms). The coordinated C=C bond has a length of 1.449 (3) Å, which is significantly longer than that of a free C=C bond (1.34 Å). There are two C-H··· π interactions involving neighbouring phenyl rings in the molecule. In the crystal, molecules are linked *via* two further C-H··· π interactions.

Related literature

For general background to ruthenium(0)-catalysed C–H activation, see: Murai *et al.* (1993). For C=C bond lengths for free olefinic double bonds, see: Orpen *et al.* (1989). For structurally related compounds, see: Lu *et al.* (1998); Jazzar *et al.* (2001).

Experimental

Crystal data

 $[Ru(C_{6}H_{9}NO)(C_{18}H_{15}P)_{2}(CO)]$ $M_{r} = 764.76$ Triclinic, $P\overline{1}$ a = 10.765 (2) Å b = 12.577 (3) Å c = 13.878 (3) Å $\alpha = 76.91$ (3)° $\beta = 88.43$ (3)°

Data collection

Rigaku R-AXIS RAPID IP
diffractometer15733 measured reflectionsAbsorption correction: multi-scan
(ABSCOR; Higashi, 1995)
 $T_{min} = 0.753, T_{max} = 1.000$ 15733 measured reflectionsRigaku R-AXIS RAPID IP
offractions15733 measured reflections $K_{int} = 0.025$ $R_{int} = 0.025$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.025$ $wR(F^2) = 0.084$ S = 1.157113 reflections

Table 1

Hydrogen-bond geometry (Å, °).

Cg1, Cg2 and Cg3 are the centroids of the C21–C26, C41–C46 and C61–C66 rings, respectively.

 $\gamma = 83.89 \ (3)^{\circ}$

Z = 2

V = 1819.7 (6) Å³

Mo $K\alpha$ radiation

 $0.30 \times 0.30 \times 0.20 \text{ mm}$

 $\mu = 0.56 \text{ mm}^{-3}$

442 parameters

 $\Delta \rho_{\rm max} = 0.66 \ {\rm e} \ {\rm \AA}^{-1}$

 $\Delta \rho_{\rm min} = -0.80$ e Å⁻³

H-atom parameters constrained

T = 173 K

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C36—H36A····Cg3	0.95	2.68	3.490 (2)	144
$C66 - H66A \cdots Cg1$	0.95	2.61	3.384 (3)	139
$C4 - H4B \cdots Cg2^{i}$	0.99	2.67	3.585 (3)	154
$C14 - H14A \cdots Cg3^{ii}$	0.95	2.90	3.693 (3)	142

Symmetry codes: (i) -x + 2, -y, -z + 1; (ii) -x, -y - 1, -z.

Data collection: *CrystalClear* (Rigaku, 2000); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge financial support from the Program for New Century Excellent Talents in the Universities of China (NCET-08–0471).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2399).

References

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

- Jazzar, R. F. R., Mahon, M. F. & Whittlesey, M. K. (2001). Organometallics, 20, 3745–3751.
- Lu, P., Paulasaari, K. J., Bau, R. & Weber, W. P. (1998). Organometallics, 17, 584–588.
- Murai, S., Kakiuchi, F., Sekine, S., Tnaka, Y., Kamatani, A., Sonoda, M. & Chatani, N. (1993). *Nature* (London), 366, 529–531.

Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton. Trans. pp. 81–83.

Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2012). E68, m608 [doi:10.1107/S1600536812014766]

Carbonylbis(triphenylphosphane- κP)(η^2 -1-vinylpyrrolidin-2-one- κO)ruthenium(0)

Si Jia Ma and Po Niu

Comment

Ortho-alkylation of acetophenone with vinyl silanes *via* ruthenium catalyzed C—H activation has been reported by (Murai *et al.*, 1993) Cylometallation of the aromatic ketone with the catalytically active ruthenium(0) species, Ru(CO) (PPh₃)₃, generated from dehydrogenation of RuH₂(CO)(PPh₃)₃, is proposed as the key step (Murai *et al.*, 1993). On exploring the feasibility of cyclometallation of *N*-vinyl-2-pyrrolidone with the ruthenium hydride complex RuH₂(CO) (PPh₃)₃, the title compound was obtained instead of the cyclometallated product.

The molecular structure of the title compound is illustrated in Fig. 1. The *N*-Vinyl-2-pyrrolidone ligand is bound to the ruthenium(0) center via the olefin double bond (C6=C7) and the ketone O atom (O2). The ruthenium(0) atom, Ru1, adopts a distorted trigonal bipyramidal coordination geometry with the carbonyl ligand (C1=O1) and the ketone O atom, O2, occupying the axial positions. The two triphenylphosphane ligands are *cis* to each other. The olefin C6=C7 double bond is almost coplanar with atom Ru1 and the two P atoms (P1 and P2), as reflected by the small mean deviation of 0.0516 Å from the mean plane defined by the five constituent atoms.

The Ru1—C6 and Ru1—C7 bond distances (2.127 (2) and 2.157 (2) Å, respectively) are similar to those reported for related olefin coordinated ruthenium complexes, such as Ru(η^2 -o-acetylstyrene-O)(CO) (PPh₃)₂ [2.121 (8) and 2.167 (9) Å; Lu *et al.*, 1998], and Ru(PPh₃)₃(CO)(C₂H₄) [2.199 (8) and 2.213 (10) Å; Jazzar *et al.*, 2001]. The C6—C7 bond length of 1.449 (3) Å is significantly longer than that for a free olefinic double bond [1.34 Å; Orpen *et al.*, 1989], but is typical for a coordinated C=C double bond, for example as in Ru(η^2 -o-acetylstyrene-O)(CO)(PPh₃)₂ [1.43 (1) Å; Lu *et al.* 1998] and Ru(PPh₃)₃(CO)(C₂H₄) [1.451 (11) Å; Jazzar *et al.* 2001].

There are two C-H $\cdots\pi$ interactions involving neighbouring phenyl rings in the molecule, and in the crystal, molecules are linked via two further C-H $\cdots\pi$ interactions (Table 1).

Experimental

To a solution of $\text{RuH}_2(\text{CO})(\text{PPh}_3)_3$ (0.40 g, 0.44 mmol) in toluene (20 ml) and under a nitrogen atmosphere was added *N*-vinyl-2-pyrrolidone (0.40 ml, 3.6 mmol). The reaction mixture was then refluxed for 1 h to give a yellow solution. After filtration, the filtrate was concentrated to *ca*. 1 ml under reduced pressure. 20 ml n-hexane were added to the residue with stirring to give a yellow solid. The solid was collected by filtration, washed with n-hexane and diethyl ether, and dried under vacuum [Yield: 0.24 g, 72%]. Yellow block-like crystals, suitable for X-ray analysis, were obtained by layering a dichloromethane solution of the title compound with hexane.

Refinement

The H atoms were included in calculated positions and treated as rding atoms: C—H = 0.95, 0.99, 0.99 and 1.00 Å for phenyl, pyrrolidone, CH₂ and CH H atoms, respectively, with $U_{iso}(H) = k \times U_{eq}(C)$, where k = 1.5 for pyrrolidone H

atoms, and = 1.2 for other H atoms. In the final difference Fourier map the highest and lowest residual electron density peaks were 0.94 and 0.92 Å, respectively, from atom Ru1.

Computing details

Data collection: *CrystalClear* (Rigaku, 2000); cell refinement: *CrystalClear* (Rigaku, 2000); data reduction: *CrystalClear* (Rigaku, 2000); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Figure 1

The molecular structure of the title compound with the atom-labelling. The displacement ellipsoids are drawn at the 40% probability level displacement ellipsoids (H atoms have been omitted for clarity).

Carbonylbis(triphenylphosphane- κP)(η^2 -1-vinylpyrrolidin-2-one- κO)ruthenium(0)

Crystal data	
$[Ru(C_6H_9NO)(C_{18}H_{15}P)_2(CO)]$	Z = 2
$M_r = 764.76$	F(000) = 788
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.396 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 10.765 (2) Å	Cell parameters from 16802 reflections
b = 12.577 (3) Å	$\theta = 6.0-55.0^{\circ}$
c = 13.878 (3) Å	$\mu = 0.56 \text{ mm}^{-1}$
$\alpha = 76.91 \ (3)^{\circ}$	T = 173 K
$\beta = 88.43 \ (3)^{\circ}$	Block, yellow
$\gamma = 83.89 \ (3)^{\circ}$	$0.30 \times 0.30 \times 0.20 \text{ mm}$
V = 1819.7 (6) Å ³	

Data collection

Rigaku R-AXIS RAPID IP diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Oscillation scans Absorption correction: multi-scan (<i>ABSCOR</i> ; Higashi, 1995) $T_{min} = 0.753, T_{max} = 1.000$ <i>Refinement</i>	15733 measured reflections 7113 independent reflections 6570 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$ $\theta_{max} = 26.0^{\circ}, \ \theta_{min} = 3.0^{\circ}$ $h = -13 \rightarrow 13$ $k = -14 \rightarrow 15$ $l = -16 \rightarrow 17$
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.025$	Hydrogen site location: inferred from
$wR(F^2) = 0.084$	neighbouring sites
S = 1.15	H-atom parameters constrained
7113 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0493P)^2 + 0.4957P]$
442 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} = 0.002$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.66$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.80$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Ru1	1.093351 (13)	0.114104 (11)	0.257193 (10)	0.01529 (7)
P1	1.25572 (5)	0.07132 (4)	0.15043 (4)	0.01623 (11)
P2	1.13168 (5)	0.28498 (4)	0.28814 (4)	0.01797 (11)
C1	0.99017 (19)	0.17719 (16)	0.15533 (15)	0.0203 (4)
O1	0.92111 (15)	0.21343 (14)	0.08981 (12)	0.0338 (4)
O2	1.21345 (13)	0.00891 (11)	0.37587 (10)	0.0218 (3)
N1	1.08507 (17)	-0.11518 (14)	0.35553 (13)	0.0254 (4)
C2	1.1837 (2)	-0.08766 (17)	0.39478 (15)	0.0234 (4)
C3	1.2510 (2)	-0.18642 (19)	0.46185 (18)	0.0340 (5)
H3A	1.2313	-0.1881	0.5322	0.041*
H3B	1.3425	-0.1886	0.4519	0.041*
C4	1.1982 (3)	-0.28127 (19)	0.42819 (19)	0.0411 (6)
H4A	1.2525	-0.3061	0.3771	0.049*
H4B	1.1906	-0.3443	0.4848	0.049*
C5	1.0699 (3)	-0.23248 (18)	0.38591 (19)	0.0359 (6)
H5A	1.0498	-0.2624	0.3287	0.043*
H5B	1.0036	-0.2466	0.4367	0.043*

CG	0.0084(2)	-0.02028(17)	0.20026(16)	0.0244(4)
	0.9984 (2)	-0.02938(17)	0.29930 (10)	0.0244 (4)
C7	0.9470 0.9423 (2)	0.0480	0.2480	0.029° 0.0257 (4)
U7 H7A	0.9423 (2)	0.0361	0.33122 (10)	0.0237(4) 0.031*
H7R	0.9568	0.0301	0.3311	0.031*
П/Б С11	1 2866 (2)	-0.07760(16)	0.5511 0.15014 (15)	0.031° 0.0207 (4)
C12	1.2800(2) 1.4022(2)	-0.13602(18)	0.13914(13) 0.18325(16)	0.0207(4)
	1.4022 (2)	-0.1004	0.18525 (10)	0.0280(3) 0.034*
C12	1.4700	-0.24052(10)	0.1902 0.1905/(19)	0.034
	1.4180 (5)	-0.24933(19) -0.2804	0.10034 (10)	0.0377(0)
C14	1.4901	-0.2034	0.2030	0.045°
	1.3193 (3)	-0.30334 (19)	0.10991 (16)	0.0387 (0)
П14А	1.3304	-0.3803	0.1/44	0.040°
	1.2040 (3)	-0.24510 (19)	0.14409 (18)	0.0357(6)
HISA	1.1362	-0.2818	0.1308	0.043*
	1.18/1 (2)	-0.13309 (18)	0.13966 (17)	0.0282 (5)
HI6A	1.1075	-0.0936	0.1229	0.034*
C21	1.41278 (18)	0.10880 (15)	0.16887 (15)	0.0202 (4)
C22	1.4889 (2)	0.15284 (17)	0.09011 (16)	0.0238 (4)
H22A	1.4639	0.1574	0.0241	0.029*
C23	1.6017 (2)	0.19015 (18)	0.10803 (18)	0.0289 (5)
H23A	1.6526	0.2213	0.0542	0.035*
C24	1.6393 (2)	0.1817 (2)	0.20374 (19)	0.0334 (5)
H24A	1.7159	0.2076	0.2158	0.040*
C25	1.5658 (2)	0.1357 (2)	0.28275 (18)	0.0330 (5)
H25A	1.5931	0.1285	0.3487	0.040*
C26	1.4523 (2)	0.10020 (18)	0.26531 (16)	0.0255 (4)
H26A	1.4014	0.0699	0.3195	0.031*
C31	1.23428 (18)	0.12472 (16)	0.01664 (14)	0.0194 (4)
C32	1.2646 (2)	0.06049 (17)	-0.05196 (16)	0.0249 (4)
H32A	1.2939	-0.0149	-0.0296	0.030*
C33	1.2523 (2)	0.10559 (19)	-0.15253 (16)	0.0289 (5)
H33A	1.2727	0.0609	-0.1986	0.035*
C34	1.2106 (2)	0.2149 (2)	-0.18598 (16)	0.0313 (5)
H34A	1.2024	0.2455	-0.2550	0.038*
C35	1.1807 (2)	0.28009 (18)	-0.11915 (16)	0.0302 (5)
H35A	1.1528	0.3556	-0.1423	0.036*
C36	1.1914 (2)	0.23534 (17)	-0.01796 (15)	0.0239 (4)
H36A	1.1695	0.2802	0.0277	0.029*
C41	1.2382 (2)	0.28262 (18)	0.39059 (16)	0.0255 (4)
C42	1.3214 (2)	0.3601 (2)	0.39016 (19)	0.0385 (6)
H42A	1.3249	0.4201	0.3348	0.046*
C43	1.3997 (3)	0.3501 (3)	0.4707 (2)	0.0536 (8)
H43A	1.4570	0.4029	0.4695	0.064*
C44	1.3949 (3)	0.2651 (3)	0.5516(2)	0.0562 (9)
H44A	1.4485	0.2589	0.6063	0.067*
C45	1.3116 (3)	0.1881 (2)	0.5534 (2)	0.0517 (8)
H45A	1.3077	0.1291	0.6095	0.062*
C46	1.2340 (3)	0.1969 (2)	0.47356 (17)	0.0354 (5)
H46A	1.1771	0.1437	0.4754	0.042*

C51	0.9930 (2)	0.37120 (16)	0.31970 (15)	0.0214 (4)
C52	0.8757 (2)	0.35118 (18)	0.29333 (17)	0.0289 (5)
H52A	0.8681	0.2895	0.2659	0.035*
C53	0.7688 (2)	0.4197 (2)	0.30621 (19)	0.0340 (5)
H53A	0.6896	0.4058	0.2860	0.041*
C54	0.7788 (2)	0.50788 (18)	0.34849 (16)	0.0304 (5)
H54A	0.7064	0.5548	0.3576	0.037*
C55	0.8944 (2)	0.52760 (18)	0.37747 (17)	0.0309 (5)
H55A	0.9009	0.5875	0.4075	0.037*
C56	1.0012 (2)	0.46060 (17)	0.36303 (16)	0.0270 (5)
H56A	1.0803	0.4755	0.3826	0.032*
C61	1.1924 (2)	0.38446 (15)	0.18363 (14)	0.0203 (4)
C62	1.1122 (2)	0.46428 (17)	0.12252 (17)	0.0266 (5)
H62A	1.0270	0.4754	0.1408	0.032*
C63	1.1553 (2)	0.52794 (18)	0.03498 (17)	0.0317 (5)
H63A	1.0993	0.5819	-0.0060	0.038*
C64	1.2787 (3)	0.51297 (18)	0.00759 (18)	0.0346 (6)
H64A	1.3078	0.5561	-0.0524	0.042*
C65	1.3605 (2)	0.43484 (18)	0.06782 (17)	0.0313 (5)
H65A	1.4458	0.4249	0.0492	0.038*
C66	1.3180 (2)	0.37086 (17)	0.15569 (17)	0.0257 (4)
H66A	1.3746	0.3178	0.1968	0.031*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Ru1	0.01573 (10)	0.01426 (10)	0.01555 (10)	-0.00144 (6)	0.00113 (6)	-0.00286 (6)
P1	0.0171 (3)	0.0156 (2)	0.0165 (2)	-0.00204 (19)	0.00124 (18)	-0.00476 (18)
P2	0.0192 (3)	0.0173 (2)	0.0182 (2)	-0.00184 (19)	0.00067 (19)	-0.00559 (19)
C1	0.0208 (10)	0.0194 (10)	0.0207 (10)	-0.0041 (8)	0.0045 (8)	-0.0042 (8)
01	0.0273 (9)	0.0407 (9)	0.0286 (9)	0.0019 (7)	-0.0075 (7)	0.0005 (7)
O2	0.0219 (8)	0.0212 (7)	0.0209 (7)	-0.0007 (6)	0.0007 (6)	-0.0028 (6)
N1	0.0294 (10)	0.0167 (8)	0.0279 (10)	-0.0049 (7)	0.0051 (8)	0.0000 (7)
C2	0.0249 (11)	0.0238 (11)	0.0182 (10)	0.0034 (8)	0.0075 (8)	-0.0014 (8)
C3	0.0386 (14)	0.0280 (12)	0.0285 (12)	0.0070 (10)	0.0027 (10)	0.0031 (9)
C4	0.0614 (18)	0.0222 (12)	0.0332 (13)	0.0057 (11)	0.0091 (12)	0.0020 (9)
C5	0.0495 (16)	0.0192 (11)	0.0362 (13)	-0.0083 (10)	0.0134 (11)	0.0003 (9)
C6	0.0218 (11)	0.0217 (10)	0.0277 (11)	-0.0074 (8)	0.0005 (8)	0.0006 (8)
C7	0.0204 (11)	0.0281 (11)	0.0239 (11)	-0.0009 (8)	0.0050 (8)	0.0024 (8)
C11	0.0276 (11)	0.0158 (9)	0.0191 (10)	-0.0021 (8)	0.0039 (8)	-0.0051 (7)
C12	0.0317 (12)	0.0238 (11)	0.0285 (11)	0.0016 (9)	-0.0012 (9)	-0.0075 (9)
C13	0.0511 (16)	0.0242 (12)	0.0348 (13)	0.0109 (11)	-0.0053 (11)	-0.0068 (10)
C14	0.0672 (19)	0.0179 (11)	0.0310 (13)	-0.0007 (11)	0.0009 (12)	-0.0077 (9)
C15	0.0520 (16)	0.0239 (12)	0.0363 (13)	-0.0141 (11)	0.0054 (11)	-0.0134 (10)
C16	0.0313 (12)	0.0238 (11)	0.0316 (12)	-0.0037 (9)	0.0023 (9)	-0.0106 (9)
C21	0.0163 (10)	0.0156 (9)	0.0298 (11)	-0.0004 (7)	0.0019 (8)	-0.0079 (8)
C22	0.0226 (11)	0.0235 (10)	0.0260 (11)	-0.0016 (8)	0.0046 (8)	-0.0082 (8)
C23	0.0228 (11)	0.0257 (11)	0.0390 (13)	-0.0062 (9)	0.0098 (9)	-0.0086 (9)
C24	0.0201 (11)	0.0335 (12)	0.0498 (15)	-0.0077 (9)	-0.0007 (10)	-0.0134 (11)
C25	0.0272 (12)	0.0412 (13)	0.0328 (12)	-0.0040 (10)	-0.0073 (9)	-0.0119 (10)

C26	0.0231 (11)	0.0276 (11)	0.0263 (11)	-0.0041 (9)	0.0008 (8)	-0.0061 (9)
C31	0.0182 (10)	0.0222 (10)	0.0185 (10)	-0.0034 (8)	0.0011 (7)	-0.0057 (8)
C32	0.0273 (11)	0.0234 (10)	0.0244 (11)	0.0006 (9)	0.0000 (8)	-0.0076 (8)
C33	0.0349 (13)	0.0356 (12)	0.0186 (10)	-0.0004 (10)	0.0015 (9)	-0.0125 (9)
C34	0.0364 (13)	0.0357 (12)	0.0201 (11)	-0.0017 (10)	-0.0015 (9)	-0.0035 (9)
C35	0.0387 (14)	0.0233 (11)	0.0255 (11)	0.0009 (9)	0.0003 (9)	-0.0010 (9)
C36	0.0293 (12)	0.0227 (10)	0.0201 (10)	-0.0028 (9)	0.0030 (8)	-0.0062 (8)
C41	0.0236 (11)	0.0332 (11)	0.0217 (10)	0.0034 (9)	-0.0004 (8)	-0.0133 (9)
C42	0.0341 (14)	0.0547 (16)	0.0339 (13)	-0.0127 (12)	0.0008 (10)	-0.0214 (12)
C43	0.0308 (15)	0.091 (2)	0.0545 (19)	-0.0096 (15)	-0.0020 (13)	-0.0469 (18)
C44	0.0420 (17)	0.095 (2)	0.0378 (16)	0.0257 (16)	-0.0180 (13)	-0.0404 (17)
C45	0.072 (2)	0.0553 (17)	0.0258 (13)	0.0253 (15)	-0.0134 (13)	-0.0173 (12)
C46	0.0477 (15)	0.0344 (12)	0.0244 (12)	0.0089 (11)	-0.0024 (10)	-0.0131 (10)
C51	0.0247 (11)	0.0187 (10)	0.0205 (10)	0.0000 (8)	0.0034 (8)	-0.0053 (8)
C52	0.0259 (12)	0.0287 (11)	0.0356 (12)	0.0001 (9)	0.0007 (9)	-0.0161 (9)
C53	0.0250 (12)	0.0362 (13)	0.0420 (14)	0.0026 (10)	0.0012 (10)	-0.0141 (11)
C54	0.0353 (13)	0.0252 (11)	0.0266 (11)	0.0078 (9)	0.0087 (9)	-0.0030 (9)
C55	0.0446 (14)	0.0199 (10)	0.0292 (12)	-0.0016 (10)	0.0092 (10)	-0.0092 (9)
C56	0.0332 (13)	0.0219 (10)	0.0276 (11)	-0.0047 (9)	0.0028 (9)	-0.0083 (9)
C61	0.0281 (11)	0.0163 (9)	0.0186 (10)	-0.0050 (8)	0.0015 (8)	-0.0073 (7)
C62	0.0296 (12)	0.0208 (10)	0.0304 (12)	-0.0023 (9)	-0.0028 (9)	-0.0079 (9)
C63	0.0460 (15)	0.0203 (10)	0.0280 (12)	-0.0054 (10)	-0.0069 (10)	-0.0020 (9)
C64	0.0521 (16)	0.0235 (11)	0.0295 (12)	-0.0174 (11)	0.0070 (10)	-0.0032 (9)
C65	0.0354 (13)	0.0257 (11)	0.0347 (12)	-0.0119 (10)	0.0121 (10)	-0.0079 (9)
C66	0.0277 (11)	0.0170 (10)	0.0341 (12)	-0.0043 (8)	0.0032 (9)	-0.0085 (8)

Geometric parameters (Å, °)

Ru1—P1	2.3578 (9)	C24—H24A	0.9500
Ru1—P2	2.3643 (7)	C25—C26	1.391 (3)
Ru1—O2	2.2135 (17)	C25—H25A	0.9500
Ru1—C1	1.803 (2)	C26—H26A	0.9500
Ru1—C6	2.127 (2)	C31—C32	1.393 (3)
Ru1—C7	2.157 (2)	C31—C36	1.397 (3)
P1-C31	1.838 (2)	C32—C33	1.387 (3)
P1-C21	1.842 (2)	C32—H32A	0.9500
P1—C11	1.845 (2)	C33—C34	1.378 (3)
P2—C61	1.843 (2)	С33—Н33А	0.9500
P2—C41	1.844 (2)	C34—C35	1.381 (3)
P2—C51	1.852 (2)	C34—H34A	0.9500
C1—O1	1.168 (3)	C35—C36	1.393 (3)
O2—C2	1.257 (3)	С35—Н35А	0.9500
N1—C2	1.318 (3)	С36—Н36А	0.9500
N1—C6	1.445 (3)	C41—C46	1.391 (3)
N1—C5	1.465 (3)	C41—C42	1.392 (3)
C2—C3	1.502 (3)	C42—C43	1.393 (4)
C3—C4	1.541 (4)	C42—H42A	0.9500
С3—НЗА	0.9900	C43—C44	1.368 (5)
С3—Н3В	0.9900	C43—H43A	0.9500
C4—C5	1.526 (4)	C44—C45	1.384 (5)

C4—H4A	0.9900	C44—H44A	0.9500
C4—H4B	0.9900	C45—C46	1.383 (4)
С5—Н5А	0.9900	C45—H45A	0.9500
С5—Н5В	0.9900	C46—H46A	0.9500
C6—C7	1.449 (3)	C51—C52	1.388 (3)
С6—Н6А	1.0000	C51—C56	1.401 (3)
С7—Н7А	0.9900	C52—C53	1.395 (3)
С7—Н7В	0.9900	С52—Н52А	0.9500
C11—C12	1.388 (3)	C53—C54	1.382 (3)
C11—C16	1.402 (3)	С53—Н53А	0.9500
C12—C13	1.394 (3)	C54—C55	1.383 (4)
C12—H12A	0.9500	C54—H54A	0.9500
C13—C14	1.385 (4)	C55—C56	1.389 (3)
C13—H13A	0.9500	С55—Н55А	0.9500
C14—C15	1.385 (4)	С56—Н56А	0.9500
C14—H14A	0.9500	C61—C62	1.393 (3)
C15—C16	1.387 (3)	C61—C66	1.400 (3)
C15—H15A	0.9500	C62—C63	1.393 (3)
C16—H16A	0.9500	C62—H62A	0.9500
C21—C26	1.393 (3)	C63—C64	1.377 (4)
C21—C22	1.395 (3)	С63—Н63А	0.9500
C22—C23	1.396 (3)	C64—C65	1.387 (4)
C22—H22A	0.9500	C64—H64A	0.9500
C23—C24	1.377 (3)	C65—C66	1.396 (3)
С23—Н23А	0.9500	С65—Н65А	0.9500
C24—C25	1.387 (3)	C66—H66A	0.9500
C1—Ru1—C6	94.36 (9)	C21—C22—H22A	119.9
C1—Ru1—C7	92.91 (9)	C23—C22—H22A	119.9
C6—Ru1—C7	39.52 (9)	C24—C23—C22	120.0 (2)
C1—Ru1—O2	169.82 (7)	C24—C23—H23A	120.0
C6—Ru1—O2	77.10(7)	С22—С23—Н23А	120.0
C7—Ru1—O2	84.04 (7)	C23—C24—C25	120.4 (2)
C1—Ru1—P1	92.41 (7)	C23—C24—H24A	119.8
C6—Ru1—P1	105.69 (7)	C25—C24—H24A	119.8
C7—Ru1—P1	145.13 (6)	C24—C25—C26	119.9 (2)
O2—Ru1—P1	84.72 (5)	C24—C25—H25A	120.0
C1—Ru1—P2	92.95 (7)	C26—C25—H25A	120.0
C6—Ru1—P2	147.84 (6)	C25—C26—C21	120.3 (2)
C7—Ru1—P2	108.87 (7)	C25—C26—H26A	119.8
O2—Ru1—P2	97.22 (5)	C21—C26—H26A	119.8
P1—Ru1—P2	105.23 (3)	C32—C31—C36	118.67 (19)
C31—P1—C21	101.69 (10)	C32—C31—P1	122.55 (16)
C31—P1—C11	101.93 (9)	C36—C31—P1	118.72 (15)
C21—P1—C11	101.87 (10)	C33—C32—C31	120.6 (2)
C31—P1—Ru1	118.18 (7)	C33—C32—H32A	119.7
C21—P1—Ru1	118.42 (7)	C31—C32—H32A	119.7
C11—P1—Ru1	112.27 (7)	C34—C33—C32	120.3 (2)
C61—P2—C41	103.74 (10)	С34—С33—Н33А	119.8

C61—P2—C51	99.15 (10)	С32—С33—Н33А	119.8
C41—P2—C51	101.51 (10)	C33—C34—C35	119.9 (2)
C61—P2—Ru1	116.54 (7)	С33—С34—Н34А	120.0
C41—P2—Ru1	117.30 (8)	С35—С34—Н34А	120.0
C51—P2—Ru1	115.93 (7)	C34—C35—C36	120.2 (2)
O1—C1—Ru1	176.85 (17)	С34—С35—Н35А	119.9
C2—O2—Ru1	110.30 (13)	С36—С35—Н35А	119.9
C2—N1—C6	118.82 (17)	C35—C36—C31	120.3 (2)
C2—N1—C5	113.4 (2)	С35—С36—Н36А	119.9
C6—N1—C5	127.36 (19)	C31—C36—H36A	119.9
O2—C2—N1	122.62 (19)	C46—C41—C42	118.4 (2)
O2—C2—C3	127.0 (2)	C46—C41—P2	117.04 (17)
N1—C2—C3	110.39 (19)	C42—C41—P2	124.53 (18)
C2—C3—C4	101.8 (2)	C41—C42—C43	120.2 (3)
С2—С3—НЗА	111.4	C41—C42—H42A	119.9
С4—С3—НЗА	111.4	C43—C42—H42A	119.9
С2—С3—Н3В	111.4	C44—C43—C42	120.6 (3)
C4—C3—H3B	111.4	C44—C43—H43A	119.7
НЗА—СЗ—НЗВ	109.3	C42—C43—H43A	119.7
C5—C4—C3	104.42 (19)	C43—C44—C45	119.7 (3)
C5—C4—H4A	110.9	C43—C44—H44A	120.1
C3—C4—H4A	110.9	C45—C44—H44A	120.1
C5—C4—H4B	110.9	C46—C45—C44	120.1 (3)
C3—C4—H4B	110.9	C46—C45—H45A	119.9
H4A—C4—H4B	108.9	C44—C45—H45A	119.9
N1—C5—C4	102.4 (2)	C45—C46—C41	120.9 (3)
N1—C5—H5A	111.3	C45—C46—H46A	119.6
C4—C5—H5A	111.3	C41—C46—H46A	119.6
N1—C5—H5B	111.3	C52—C51—C56	118.2 (2)
C4—C5—H5B	111.3	C52—C51—P2	118.60 (15)
H5A—C5—H5B	109.2	C56—C51—P2	123.10 (17)
N1—C6—C7	116.14 (19)	C51—C52—C53	121.4 (2)
N1—C6—Ru1	107.40 (13)	C51—C52—H52A	119.3
C7—C6—Ru1	71.35 (11)	С53—С52—Н52А	119.3
N1—C6—H6A	117.6	C54—C53—C52	119.6 (2)
С7—С6—Н6А	117.6	С54—С53—Н53А	120.2
Ru1—C6—H6A	117.6	С52—С53—Н53А	120.2
C6—C7—Ru1	69.13 (11)	C53—C54—C55	119.8 (2)
С6—С7—Н7А	116.7	С53—С54—Н54А	120.1
Ru1—C7—H7A	116.7	С55—С54—Н54А	120.1
С6—С7—Н7В	116.7	C54—C55—C56	120.6 (2)
Ru1—C7—H7B	116.7	С54—С55—Н55А	119.7
H7A—C7—H7B	113.8	С56—С55—Н55А	119.7
C12—C11—C16	118.81 (19)	C55—C56—C51	120.4 (2)
C12—C11—P1	123.66 (16)	С55—С56—Н56А	119.8
C16—C11—P1	117.53 (17)	С51—С56—Н56А	119.8
C11—C12—C13	120.5 (2)	C62—C61—C66	118.4 (2)
C11—C12—H12A	119.8	C62—C61—P2	121.09 (17)
C13—C12—H12A	119.8	C66—C61—P2	119.89 (16)

C14—C13—C12	120.2 (2)	C63—C62—C61	121.0 (2)
C14—C13—H13A	119.9	С63—С62—Н62А	119.5
C12—C13—H13A	119.9	С61—С62—Н62А	119.5
C15—C14—C13	119.8 (2)	C64—C63—C62	120.2 (2)
C15—C14—H14A	120.1	С64—С63—Н63А	119.9
C13—C14—H14A	120.1	С62—С63—Н63А	119.9
C14—C15—C16	120.2 (2)	C63—C64—C65	119.9 (2)
C14—C15—H15A	119.9	С63—С64—Н64А	120.1
C16—C15—H15A	119.9	C65—C64—H64A	120.1
C15—C16—C11	120.5 (2)	C64—C65—C66	120.2 (2)
C15—C16—H16A	119.8	С64—С65—Н65А	119.9
C11—C16—H16A	119.8	С66—С65—Н65А	119.9
C26—C21—C22	119.16 (18)	C65—C66—C61	120.4 (2)
C26—C21—P1	118.23 (15)	С65—С66—Н66А	119.8
C22—C21—P1	122.43 (16)	С61—С66—Н66А	119.8
C21—C22—C23	120.2 (2)		
C1—Ru1—P1—C31	6.89 (9)	P1-C11-C12-C13	179.94 (18)
C6—Ru1—P1—C31	102.11 (10)	C11—C12—C13—C14	-0.1(4)
C7— $Ru1$ — $P1$ — $C31$	105.47 (13)	C12-C13-C14-C15	0.8 (4)
Ω_{2} Ru1 P1 C31	177.11 (8)	C_{13} C_{14} C_{15} C_{16}	-1.1(4)
$P_2 = R_{11} = P_1 = C_{31}$	-86.83(8)	C14-C15-C16-C11	0.6(4)
C1 - Ru1 - P1 - C21	130.35(10)	C12-C11-C16-C15	0.2(3)
C6-Ru1-P1-C21	-13443(10)	$P_1 = C_{11} = C_{16} = C_{15}$	179.86(17)
C7— $Ru1$ — $P1$ — $C21$	-131.07(13)	C_{31} P1 C_{21} C_{26}	167.81 (17)
$\Omega^2 = Ru1 = P1 = C^21$	-59.43(9)	C_{11} P_{1} C_{21} C_{20}	-87.17(17)
$P_2 = R_{11} = P_1 = C_{21}$	36.63 (8)	$R_{11} = P_1 = C_{21} = C_{26}$	36 48 (18)
C1 Ru1 P1 C21	-11133(10)	C_{31} P1 C_{21} C_{20}	-7.30(19)
C6 $Ru1$ $P1$ $C11$	-1611(10)	C_{11} P_{1} C_{21} C_{22}	97 73 (18)
$C7$ _Ru1_P1_C11	-12.75(13)	Ru1_P1_C21_C22	-13862(15)
$O_2 = Ru1 = P1 = C11$	58 80 (0)	$C_{26} C_{21} C_{22} C_{23}$	-15(3)
$P_2 = R_{11} = P_1 = C_{11}$	154.95(7)	$P_1 = C_{21} = C_{22} = C_{23}$	173 53 (16)
12 - Ru1 - 11 - C11	-56.04(10)	$C_{21} C_{22} C_{23} C_{24}$	173.33(10) 1.2(3)
$C_{1} = R_{1} = R_{2} = C_{01}$	-150.05(12)	$C_{21} = C_{22} = C_{23} = C_{24}$	1.2(3)
C_{0} K_{0} F_{2} C_{0}	-139.03(13) 150.12(10)	$C_{22} = C_{23} = C_{24} = C_{23}$	0.4(4)
C = Ru1 = P2 = C61	-130.13(10) 122.72(0)	$C_{23} = C_{24} = C_{23} = C_{20}$	-1.3(4)
$D_2 = K_{11} = F_2 = C_{01}$	125.75(9)	$C_{24} = C_{23} = C_{20} = C_{21}$	1.1(4)
$P_1 = Ru_1 = P_2 = Co_1$	37.27(8)	$C_{22} = C_{21} = C_{20} = C_{23}$	0.4(3)
CI = RuI = P2 = C41	-1/9.80(10)	P1 = C21 = C20 = C23	-1/4.8/(18)
C_{0} Ru1 P2 C41	//.12(14)	C_{21} P1 C_{31} C_{32}	93.05 (18)
C = Ru1 = P2 = C41	80.05 (10)	CII = PI = C31 = C32	-11.92 (19)
02 - Ru1 - P2 - C41	-0.09(9)	Ru1 - P1 - C31 - C32	-135.47 (16)
PI— RuI — $P2$ — $C4I$	-86.56 (8)	$C_{21} = P_{1} = C_{31} = C_{36}$	-83.90 (17)
CI = RuI = P2 = C51	60.09 (10)	CII = PI = C3I = C36	1/1.13 (16)
Co-Kul - P2 - C51	-42.92 (14)	KUI - PI - C3I - C36	4/.5/(18)
C / - Ku1 - P2 - C51	-54.00 (10)	$C_{30} - C_{31} - C_{32} - C_{33}$	0.0 (3)
U_2 — Ku_1 — P_2 — C_51	-120.14 (9)	P1—C31—C32—C33	-176.98 (17)
P1— $Ru1$ — $P2$ — $C51$	153.40 (7)	C31—C32—C33—C34	0.4 (3)
C6—Ru1—C1—O1	-12 (3)	C32—C33—C34—C35	-0.1 (4)
C7—Ru1—C1—O1	-52 (3)	C33—C34—C35—C36	-0.6(4)

O2—Ru1—C1—O1	20 (4)	C34—C35—C36—C31	1.0 (3)
P1—Ru1—C1—O1	94 (3)	C32—C31—C36—C35	-0.7 (3)
P2—Ru1—C1—O1	-161 (3)	P1-C31-C36-C35	176.41 (17)
C1—Ru1—O2—C2	-20.1 (4)	C61—P2—C41—C46	-165.70 (17)
C6—Ru1—O2—C2	13.36 (14)	C51—P2—C41—C46	91.78 (19)
C7—Ru1—O2—C2	52.86 (14)	Ru1—P2—C41—C46	-35.6 (2)
P1—Ru1—O2—C2	-94.08 (13)	C61—P2—C41—C42	14.3 (2)
P2—Ru1—O2—C2	161.18 (13)	C51—P2—C41—C42	-88.3 (2)
Ru1—O2—C2—N1	-7.1 (2)	Ru1—P2—C41—C42	144.35 (19)
Ru1—O2—C2—C3	172.56 (18)	C46—C41—C42—C43	1.1 (4)
C6—N1—C2—O2	-8.6 (3)	P2-C41-C42-C43	-178.9 (2)
C5—N1—C2—O2	178.5 (2)	C41—C42—C43—C44	-0.8 (4)
C6—N1—C2—C3	171.72 (18)	C42—C43—C44—C45	0.1 (4)
C5—N1—C2—C3	-1.1 (3)	C43—C44—C45—C46	0.3 (4)
O2—C2—C3—C4	-162.1 (2)	C44—C45—C46—C41	0.0 (4)
N1—C2—C3—C4	17.6 (2)	C42—C41—C46—C45	-0.7 (4)
C2—C3—C4—C5	-26.3 (2)	P2-C41-C46-C45	179.3 (2)
C2—N1—C5—C4	-16.1 (3)	C61—P2—C51—C52	105.11 (18)
C6—N1—C5—C4	171.8 (2)	C41—P2—C51—C52	-148.73 (18)
C3—C4—C5—N1	25.8 (2)	Ru1—P2—C51—C52	-20.5(2)
C2—N1—C6—C7	-57.9 (3)	C61—P2—C51—C56	-70.44 (19)
C5—N1—C6—C7	113.8 (2)	C41—P2—C51—C56	35.7 (2)
C2—N1—C6—Ru1	19.4 (2)	Ru1—P2—C51—C56	164.00 (15)
C5—N1—C6—Ru1	-168.89 (18)	C56—C51—C52—C53	2.1 (3)
C1—Ru1—C6—N1	158.30 (15)	P2-C51-C52-C53	-173.67 (19)
C7—Ru1—C6—N1	-112.4 (2)	C51—C52—C53—C54	-1.7 (4)
O2—Ru1—C6—N1	-16.09 (13)	C52—C53—C54—C55	0.1 (4)
P1—Ru1—C6—N1	64.56 (15)	C53—C54—C55—C56	1.0 (3)
P2—Ru1—C6—N1	-99.09 (16)	C54—C55—C56—C51	-0.7 (3)
C1—Ru1—C6—C7	-89.28 (13)	C52—C51—C56—C55	-0.9 (3)
O2—Ru1—C6—C7	96.33 (13)	P2-C51-C56-C55	174.67 (17)
P1—Ru1—C6—C7	176.98 (11)	C41—P2—C61—C62	-135.17 (17)
P2—Ru1—C6—C7	13.33 (19)	C51—P2—C61—C62	-30.84 (18)
N1—C6—C7—Ru1	100.72 (16)	Ru1—P2—C61—C62	94.29 (17)
C1—Ru1—C7—C6	93.33 (13)	C41—P2—C61—C66	54.18 (18)
O2—Ru1—C7—C6	-76.93 (12)	C51—P2—C61—C66	158.51 (16)
P1—Ru1—C7—C6	-5.09 (18)	Ru1—P2—C61—C66	-76.36 (17)
P2—Ru1—C7—C6	-172.55 (11)	C66—C61—C62—C63	1.0 (3)
C31—P1—C11—C12	109.99 (19)	P2-C61-C62-C63	-169.81 (16)
C21—P1—C11—C12	5.2 (2)	C61—C62—C63—C64	-0.2 (3)
Ru1—P1—C11—C12	-122.56 (17)	C62—C63—C64—C65	-0.5 (3)
C31—P1—C11—C16	-69.70 (18)	C63—C64—C65—C66	0.5 (3)
C21—P1—C11—C16	-174.53 (17)	C64—C65—C66—C61	0.3 (3)
Ru1—P1—C11—C16	57.76 (18)	C62—C61—C66—C65	-1.0 (3)
C16-C11-C12-C13	-0.4(3)	P2—C61—C66—C65	169.86 (16)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C36—H36 <i>A</i> ··· <i>Cg</i> 3	0.95	2.68	3.490 (2)	144
C66—H66 <i>A</i> … <i>Cg</i> 1	0.95	2.61	3.384 (3)	139
C4—H4 B ···Cg2 ⁱ	0.99	2.67	3.585 (3)	154
C14—H14 <i>A</i> ··· <i>Cg</i> 3 ⁱⁱ	0.95	2.90	3.693 (3)	142

Cg1, Cg2 and Cg3 are the centroids of the C21–C26, C41–C46 and C61–C66 rings, respectively.

Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x, -y-1, -z.